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SUMMARY

Helicases are molecular motors that separate
DNA strands for efficient replication of ge-
nomes. We probed the kinetics of individual
ring-shaped T7 helicase molecules as they
unwound double-stranded DNA (dsDNA) or
translocated on single-stranded DNA (ssDNA).
A distinctive DNA sequence dependence was
observed in the unwinding rate that correlated
with the local DNA unzipping energy landscape.
The unwinding rate increased �10-fold (ap-
proaching the ssDNA translocation rate) when
a destabilizing force on the DNA fork junction
was increased from 5 to 11 pN. These observa-
tions reveal a fundamental difference between
the mechanisms of ring-shaped and nonring-
shaped helicases. The observed force-velocity
and sequence dependence are not consistent
with a simple passive unwinding model. How-
ever, an active unwinding model fully supports
the data even though the helicase on its own
does not unwind at its optimal rate. This work
offers insights into possible ways helicase ac-
tivity is enhanced by associated proteins.

INTRODUCTION

Helicases are vital enzymes that separate a double-

stranded nucleic acid (dsNA) into two single-stranded

nucleic acids (ssNA) during DNA replication, DNA repair,

DNA recombination, and transcription termination (Loh-

man and Bjornson, 1996; Patel and Picha, 2000). They

are processive molecular motors which utilize chemical

energy from NTP hydrolysis to translocate along ssNA.

As they encounter a ss/dsNA fork junction, they are capa-

ble of moving the junction forward, thereby catalyzing the

unwinding of the dsNA. Many important functions and

properties of these enzymes have been brought to light

in the past few decades through a combination of struc-

tural, biochemical, and, more recently, single-molecule
studies (e.g., Kim et al., 1998; Singleton et al., 2000; Ene-

mark and Joshua-Tor, 2006; Dillingham et al., 2000; Maluf

et al., 2003; Kaplan and O’Donnell, 2004; Brendza et al.,

2005; Dohoney and Gelles, 2001; Spies et al., 2003;

Perkins et al., 2004; Dessinges et al., 2004; Myong et al.,

2005; Dumont et al., 2006; Lee et al., 2006). However,

one intriguing question which has been under much inves-

tigation but still remains unanswered is how a helicase

couples its translocation along a ssNA to the unwinding

of a dsNA.

Two competing mechanisms have been put forth that

differ in the thermodynamic and kinetic natures of the in-

teractions of a helicase with a fork junction (Lohman and

Bjornson, 1996; von Hippel and Delagoutte, 2001; Soulta-

nas and Wigley, 2001; Betterton and Jülicher, 2003). The

simplest scenario is the ‘‘passive’’ unwinding mechanism.

Here the dsNA at the junction is transiently opened solely

by thermal fluctuations, and the helicase may forward

translocate onto the newly available ssNA, thereby pre-

venting it from reannealing. Thus the helicase unwinds

the dsNA by simply trapping the thermally frayed ssNA

at the junction. In the alternative ‘‘active’’ unwinding

mechanism, as the helicase encounters a junction, it ac-

tively destabilizes the dsNA near the junction and there-

fore shifts the equilibrium of the fork toward opening.

The degree of the helicase’s active involvement in the un-

winding mechanism depends on the extent to which the

helicase shifts the equilibrium of junction opening, which

in turn depends on the helicase’s NTPase mechanism

and the nature of its interaction with the fork.

The passive unwinding mechanism is appealing due to

its simplicity. Early calculations indicated that the replica-

tion fork might unwind via a passive mechanism. It was

proposed that the trapping of the thermally fluctuating

fork alone might be sufficient to account for the rapid

rate of replication (Chen et al., 1992; Delagoutte and von

Hippel, 2002). Similarly, it has been proposed that Rho

helicase, a ring-shaped transcription termination factor,

might effectively be passive, its unwinding of the RNA/

DNA hybrid driven solely by thermally induced fraying of

the hybrid junction (Geiselmann et al., 1993; von Hippel

and Delagoutte, 2001). Structural studies of a nonring-

shaped helicase, hepatitis C virus NS3, have indicated
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a passive mechanism for unwinding (Kim et al., 1998).

However, biochemical and/or structural studies of Rep,

PcrA, and UvrD, all of which are nonring-shaped heli-

cases, favor an active mechanism for unwinding (Wong

and Lohman, 1992; Amaratunga and Lohman, 1993; Soul-

tanas et al., 2000; Fischer et al., 2004). While the detailed

nature of the mechanism (‘‘active rolling’’ versus ‘‘inch-

worm’’) and the stoichiometry (dimer versus monomer)

of the enzymes may still be under debate, a consensus

seems to have emerged that these helicases interact

with the dsNA ahead of the junction and thus are thought

to destabilize the fork to facilitate unwinding. Taken to-

gether, there is evidence that some nonring-shaped heli-

cases may use a passive unwinding mechanism while

others may use an active mechanism. However, much

less is known about the unwinding mechanism of ring-

shaped helicases.

T7 helicase is a model enzyme for understanding hex-

americ ring-shaped helicases (Richardson, 1983; Patel

and Hingorani, 1993) and perhaps helicases in general.

Figure 1. Experimental Configuration

(A) This cartoon illustrates the experimental configuration for the ob-

servation of the unwinding of dsDNA by a single T7 helicase (not to

scale). One strand of the dsDNA to be unwound was attached to a trap-

ped microsphere via a biotin/streptavidin connection. The other strand

was anchored to a microscope coverslip surface via a dig/antidig con-

nection on a dsDNA anchoring segment. The microsphere was held in

a feedback-enhanced optical trap so that its position relative to the

trap center and the force on it could be measured. Helicase unwinding

of dsDNA was monitored as an increase in the ssDNA length. Helicase

did not unwind the dsDNA anchoring segment because it prefers two

ssDNA regions at a fork junction (Ahnert and Patel, 1997).

(B) The DNA construct contained both digoxigenin (dig) and biotin

labels for binding to the coverglass and microsphere, respectively.

The dig label was located at one end of the DNA construct and was

bound to an antidigoxigenin-coated coverglass. The biotin label was

on one strand of the DNA and was bound to a streptavidin-coated

microsphere. On the same strand near this biotin label was a nick in

the ssDNA. The nick allowed the DNA to be mechanically unwound

(unzipped) when the DNA anchor on the coverslip was moved away

from the microsphere.
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As a critical part of the relatively simple T7 bacteriophage

replication complex, T7 helicase consists of homologous

monomers that form a ring-shaped hexamer in the pres-

ence of dTTPs and ssDNA (Patel and Hingorani, 1993;

Egelman et al., 1995). It is known to bind one strand of

dsDNA within its central channel (Egelman et al., 1995)

while excluding the complementary strand (Hacker and

Johnson, 1997; Ahnert and Patel, 1997). During transloca-

tion from 50 to 30 on ssDNA (Tabor and Richardson, 1981),

the helicase unwinds dsDNA as it hydrolyzes dTTP (Mat-

son and Richardson, 1983; Matson et al., 1983).

In this report we present single-molecule mechanical

measurements in conjunction with a detailed thermo-

dynamic and kinetic analysis to distinguish between a

passive and active unwinding mechanism. First, the rate

of helicase translocation along ssDNA was directly mea-

sured using a novel single-molecule assay. Since helicase

did not have to work against a fork junction, this estab-

lished the maximum rate for helicase translocation. Sec-

ond, the rate of helicase unwinding dsDNA was directly

measured. The unwinding rate increased dramatically

with a force destabilizing the fork and at high force ap-

proached the ssDNA translocation rate. Further, the un-

winding rate showed distinctive sequence dependence:

fast at AT-rich regions and slow at GC-rich regions. Third,

in order to quantitatively correlate unwinding rate with the

physical barrier that the helicase encountered during un-

winding, the dsDNA was mechanically unzipped to deter-

mine the sequence-dependent unzipping force. Fourth,

sequence-dependent kinetic models for both passive

and active mechanisms were formulated to explain the

helicase unwinding rate. Our data is not accounted for

by the simple passive unwinding model but instead sup-

ports an active unwinding model in which the helicase par-

tially destabilizes the fork junction to facilitate unwinding.

RESULTS

Single-Molecule Helicase Assay

Both the measurements for ssDNA translocation and un-

winding began with a similar experimental configuration

(Figure 1; Johnson et al., 2004; Experimental Procedures)

based on a DNA-unzipping technique we previously de-

veloped (Koch et al., 2002). An unwinding segment con-

sisting of 17 pseudorepeats each of �200 base pair (bp)

was ligated to an anchoring DNA segment (Figures 1B

and S1) and suspended between an optically trapped mi-

crosphere and the glass coverslip surface (Figure 1A). The

anchoring and the unwinding segments of the DNA tem-

plate were joined by a single strand only; the nick in the

opposite strand allowed the two DNA strands to separate

when the coverslip was moved away from the optical trap.

Initially �400 bp of dsDNA were mechanically unwound

(unzipped) to generate a ssDNA region by movement of

the coverslip relative to the trapped microsphere (Figure 2,

step 1). Freely diffusing helicase could load onto the

ssDNA (Tabor and Richardson, 1981; Ahnert and Patel,

1997), translocate from 50 to 30, and subsequently unwind



the remaining dsDNA. This 400 nucleotide (nt) length of

ssDNA was maintained under �14 pN tension until a heli-

case began to unwind the dsDNA, resulting in an increase

of ssDNA length and thereby a decrease in its tension (Fig-

ure 2, step 2). The helicase binding time was dependent on

the length of ssDNA initially unzipped as well as the heli-

case concentration (data not shown). To ensure that we

were measuring the kinetics of a single T7 helicase, we

used a low helicase monomer concentration (2.0 nM) so

that the average helicase arrival time at the fork junction

(�80 s; Figure 3A, Supplemental Discussion) was signifi-

cantly longer than the typical ssDNA translocation and

dsDNA unwinding times.

This configuration provided several advantages for de-

tecting motions of individual helicase molecules. First,

a helicase did not need to be bound to any surfaces for

its motion to be monitored. Thus, the helicase did not

need to be tagged for single-molecule measurements,

and the helicase itself was not under direct mechanical

stress. Second, since a helicase was not able to bind or

unwind until a ssDNA loading region was generated me-

chanically, the start of each measurement could be inde-

pendently initiated for each microsphere-tethered DNA

molecule. This allowed for efficient use of the sample.

Third, for each bp of the dsDNA unwound, 2 nt of ssDNA

were released, providing an amplification of the detection

of the helicase motion.

Fast Translocation of the Helicase on ssDNA

The first experiment used a novel method to investigate

the ssDNA translocation rate of helicase on long stretches

Figure 2. Experimental Method for Measurements of Heli-

case Translocation along a ssDNA and a Typical Data Set

The experimental procedures were: (1) mechanically unwind �400 bp

of dsDNA at a constant velocity of 1400 bp/s to produce a ssDNA load-

ing region, (2) maintain the DNA extension until force drops below a

threshold indicating helicase unwinding of the DNA fork, (3) mechan-

ically unwind another �500 bp (DL) of dsDNA to generate ssDNA for

helicase translocation, and (4) maintain new DNA fork position until

force drops again indicating the helicase has caught up with the

fork. The blue regions represent the two mechanical unwinding steps,

and the red regions represent the two helicase unwinding events with

intervening time Dt. Helicase translocation velocity on ssDNA was

computed as DL/Dt.
 of ssDNA. Once a T7 helicase was detected at the fork

junction, as determined by a tension drop below a thresh-

old value (�10 pN), the coverslip was quickly moved to

mechanically unwind another �500 bp (DL) of down-

stream dsDNA, thereby providing a segment of ssDNA

for helicase translocation. After a time Dt, the helicase

caught up with the new junction position, resulting in an-

other tension drop (Figure 2, steps 3 and 4). The helicase

ssDNA translocation rate was then obtained from DL/Dt.

The ssDNA translocation rate of different helicase mole-

cules has a Gaussian distribution with a mean trans-

location rate of 322 ± 62 nt/s (mean ± sd) at �25�C

(Figure 3B; Experimental Procedures). This broad distribu-

tion could be a result of pausing kinetics in ssDNA trans-

location and/or heterogeneity in helicase molecules. (We

also measured this rate over a distance of �2800 nt and

found it to be essentially identical: 320 ± 44 nt/s.) The av-

erage ssDNA translocation rate measured in bulk at 18�C

was 130 nt/s (Kim et al., 2002), and the rate at 25�C was

estimated to be 2- to 3-fold higher (S.S.P., unpublished

data), consistent with our measurements. It should be

noted that in our single-molecule assay the translocation

rate on ssDNA was measured under ssDNA tension of

�14 pN. However, from observations of reverse motion

during unwinding (see below) we have evidence that the

translocation rate was not dependent on the tension in

the ssDNA (Figure S2C).

Helicase Unwinding Rate Is DNA

Sequence Dependent

Using similar methods, the kinetics of helicase unwinding

of dsDNA were measured under constant tension in

ssDNA. After the helicase bound to the ssDNA loading

Figure 3. Measurements of Helicase Arrival Time at the Fork

Junction and Helicase Translocation Velocity on ssDNA

(A) Measurement of the time it took a helicase to bind to the 400 bp

ssDNA loading region and then reach the DNA junction. With the heli-

case concentration used in our experiments (2 nM monomer), this time

followed a single exponential distribution (fit in red) with an average

time of �80 s (N = 237). This average helicase arrival time at the junc-

tion was much longer than the typical observation time for subsequent

ssDNA translocation or DNA unwinding measurements (see Supple-

mental Discussion). Therefore, it was unlikely that more than one heli-

case acted on the same DNA template.

(B) A histogram of ssDNA helicase translocation rate. Data were

pooled from many measurements, and the pooled histogram was

well fit by a Gaussian distribution with a mean of 322 nt/s and a stan-

dard deviation of 62 nt/s.
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region and began to unwind the dsDNA (Figure 4, steps 1

and 2), feedback control allowed us to follow the fork junc-

tion motion in real-time while keeping the tension in the

ssDNA constant (Figure 4, steps 3 and 4). This helicase-

loading technique allowed for measurements to be con-

ducted at tensions under which the DNA would normally

reanneal if the helicase were not present, consistent with

the helicase acting as a physical barrier preventing the

DNA near the junction from reannealing (von Hippel and

Delagoutte, 2001). As the helicase unwound dsDNA, the

DNA junction advanced smoothly, with only occasional

pauses (Figures 6A and S3). Sometimes the newly gener-

ated ssDNA reannealed almost instantaneously, which we

attributed to either the helicase dissociating from the DNA

or the DNA reannealing behind the helicase (Figure S2B).

Occasionally, the junction position moved backward on

the DNA with finite velocity (Figures S2A and S2C). This re-

verse movement could be produced by the helicase

switching from one ssDNA strand to the other but still

moving in the 50 to 30 direction. Such reverse movement

has also been previously reported for UvrD and NS3 (Des-

singes et al., 2004; Dumont et al., 2006). The observed re-

verse rates (�310 nt/s) were comparable to the ssDNA

translocation rate and faster than the dsDNA unwinding

rate, which is expected since the helicase was no longer

working against the DNA fork.

The unwinding rate showed a distinctive DNA se-

quence-dependence. The instantaneous unwinding rate

averaged over many traces acquired at a force of

11.2 pN displayed a periodicity of �200 bp (Figure 5A),

consistent with the periodicity of pseudorepeats in the

DNA (Experimental Procedures). To correlate the helicase

sequence-dependent unwinding rate with the corres-

Figure 4. Experimental Method for the Determination of

Helicase Unwinding Velocity under a Constant Force and a

Typical Data Set

The experimental procedures were: (1) mechanically unwind �400 bp

of dsDNA to produce a ssDNA loading region, (2) maintain the DNA ex-

tension until force drops indicating helicase is unwinding dsDNA at the

junction, (3) allow force to continue to drop until force reaches a desired

value, and (4) maintain constant force while helicase is unwinding

dsDNA. The blue (red) region of the data represents the mechanical

(helicase) unwinding.
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ponding DNA base-pairing strength, a separate experi-

ment was conducted in which the DNA was mechanically

unwound (unzipped) at a slow velocity in the absence of

helicase. In these data, the base-pairing strengths were

reflected by the unzipping force (Bockelmann et al.,

1997), with low force corresponding to AT-rich regions

and high force corresponding to GC-rich regions (Fig-

ure 5B). Comparison between Figures 5A and 5B shows

that the helicase unwinding rate anticorrelated with the

DNA-unzipping force, indicating that it is harder for the

helicase to unwind the DNA when the affinity between

the two DNA strands is stronger. Additional measure-

ments of unwinding at other forces and on a different

DNA sequence again displayed rates which anticorrelated

with the unzipping force (Figures S4 and S5), indicating

that sequence-dependent unwinding is characteristic

of this helicase. The finding that T7 helicase has a

sequence-dependent unwinding rate is fully consistent

with the force-dependence described below.

Helicase Unwinding Rate Is Strongly

Force Dependent

The forces exerted on ssDNA lower the affinity between

the two strands and should assist helicase motion. To

test this hypothesis, helicase unwinding of dsDNA was

measured at various constant forces below the mech-

anical unzipping force (Figures 6A and S3). The average

unwinding rate was found to increase nonlinearly with re-

spect to force, with the rate at low force (29 bp/s at 5.2 pN)

approaching that measured in bulk (10–15 bp/s; Jeong

et al., 2004; Stano et al., 2005) and the rate at high force

(220 bp/s at 11.2 pN) approaching the ssDNA transloca-

tion rate (Figure 6B). Previous single-molecule studies of

Figure 5. Sequence Dependence of Helicase Unwinding

Velocity

(A) Instantaneous velocity of helicase along dsDNA template positions

under 11 pN force. The measured curve was obtained by averaging

32 single traces. The measured sequence-dependent velocity agreed

well with that predicted from an active model.

(B) Measured and predicted dsDNA mechanical unwinding force on

the same DNA sequence. Unzipping force anticorrelates with the heli-

case unwinding rate in Figure 5A.



Figure 6. Force-Velocity Measurements

during Helicase Unwinding

(A) Example traces of helicase unwinding of

dsDNA atvarious forces. Unwinding velocity var-

ied dramatically with the applied forceon ssDNA.

(B) Measured force-velocity relation and its

comparison with predictions based on various

models. Measured force-velocity relation devi-

ated significantly from a simple passive model

at step sizes (d) 1, 2, or 3 bp; larger d only

made the deviation larger. In contrast, an active

model with d = 2 bp and destabilization energy

DGd = 1.2 kBT per bp over a 6 bp range agrees

well with the measurements. Also marked on

the plot are the ssDNA translocation rate k0

and the minimum (critical) DNA mechanical

unwinding force Fc for the given sequence. Er-

ror bars indicate standard errors of the means.
different helicases found no force-dependence (Des-

singes et al., 2004; Dumont et al., 2006). Thus, the unwind-

ing mechanism of this ring-shaped helicase appears to be

fundamentally different from the nonring-shaped super-

family 1 and 2 helicases. The increase in unwinding rate

with increasing force indicates that the rate of T7 helicase

(and perhaps other ring-shaped helicases) is limited by

strand separation.

The average length of DNA unwound before reannealing

was also dependent on force. At 11.2 pN, most helicase

molecules (85%) completely unwound the remaining

3.6 kb DNA, while at 5.2 pN, the average length was

only 343 bp (Figure S6). In previous bulk studies, the un-

winding processivity of T7 helicase was measured to be

�60 bp (Jeong et al., 2004), whereas the processivity on

ssDNA has been observed to be 75,000 nt (Kim et al.,

2002). These results agree well with our observations

that the total unwinding distance increased from low to

high force. Interestingly, force-dependent processivity

was also found in other helicases (Dessinges et al.,

2004; Dumont et al., 2006).

Unwinding Rate Observations Do Not Support

a Simple Passive Unwinding Model

The above results for both the ssDNA translocation rate

and unwinding rates should allow for the differentiation

between passive and active unwinding models for T7 heli-

case. Since the dsDNA presents a strong physical barrier

to the helicase unwinding, qualitative reasoning might

suggest that the observed force- and sequence-depen-

dencies imply a passive mechanism of unwinding. There-

fore, we first formulated a passive kinetic model in an

effort to account for unwinding rates as a function of force

(Figure 7B). The basic formulation was similar to the theory

of Betterton and Jülicher (2003, 2005) but with an exten-

sion to incorporate DNA sequence- and force-dependent

fork junction opening kinetics and to allow the helicase

step size to be larger than 1 nt.
Consider a case in which the helicase has translocated

on the ssDNA (under tension F) in the 50 to 30 direction to-

ward the DNA fork junction and is located at the l th nucleo-

tide from the 50 end (Figure 7A). The helicase translocation

rate k00ðmÞmay be altered by the presence of the junction,

which is open m bases from the helicase with a probability

Pðl;m;FÞ. Assuming the DNA fork opening/closing events

follow rapid equilibrium kinetics, the overall helicase un-

winding rate at the l th base is an average over all possible

junction positional dependent rates, k00ðmÞ:

kðl;FÞ=
XN
m = 0

k00ðmÞPðl;m;FÞ: (1)

The probability for the DNA to be open m bases from the

helicase can be calculated for any given DNA sequence:

Pðl;m; FÞ= exp½� DGðl + m;FÞ=kBT �PN
m = 0 exp½� DGðl + m; FÞ=kBT �; (2)

where DGðl + m; FÞ is the free energy of the DNA with

n = l + m bases opened under tension F relative to its fully

duplex form.

In the passive unwinding mechanism, this free energy is

composed of two contributions, one from the base-pairing

energy of the n opened bases, DGbp, and one from the free

energy of ssDNA under constant force F, DGssDNA:

DGpassiveðn; FÞ= DGbp + DGssDNA

=
Xn

i = 1

DGbpðiÞ � 2n

ZF

0

xntðF 0ÞdF 0; ð3Þ

where DGbpðiÞ is the free energy change due to loss of the

base pairing of the i th base pair along the DNA and xntðFÞ
is the extension versus force relation for one nucleotide of

ssDNA (Figure S7). DGbpðiÞ and xntðFÞwere experimentally

determined (Experimental Procedures). Therefore,

DGpassiveðn; FÞwas directly computed for a given template

location along the DNA sequence at a specified force. In

addition, the helicase cannot move forward unless the
Cell 129, 1299–1309, June 29, 2007 ª2007 Elsevier Inc. 1303



Figure 7. Cartoon of Passive and Active Unwinding Mecha-

nisms
(A) A sketch illustrating the notation used for modeling the helicase

movement toward a fork junction. l is the number of nucleotides

between the 50 end of the ssDNA and the helicase. m is the number

nucleotides of the ssDNA that are open between the helicase and

the junction. Therefore, n = l + m is the total number of nucleotides

from the end of the ssDNA to the junction. M defines the range of inter-

actions between the helicase and the junction in nt.

(B) Illustration of the passive unwinding mechanism. In this model the

DNA fork thermally fluctuates between dsDNA and ssDNA states (step

1). When the amount of ssDNA between the helicase and the junction is

greater than or equal to the helicase step size (d) the helicase may

forward translocate (step 2).

(C) Illustration of the active unwinding mechanism. In this model the

helicase destabilizes a region (the light blue cloud) of dsDNA near

the junction (step 1). This makes the junction more likely to be open

so that the helicase is able to step forward (step 2) more frequently.

(D) A cartoon illustrating the degree of activeness in DNA unwinding by

helicase. When DGd = 0, the helicase may be considered ‘‘strictly’’

passive, and when DGd � DGGC (� 3:4 kBT , GC base-pairing energy),

‘‘optimally active.’’ For T7 helicase DGd � 1� 2 kBT .
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available ssDNA in front of it is equal to or greater than its

step size (d). Therefore,

k00 passiveðmÞ=
�

0; m < d

k0; mRd
; (4)

where k0 represents the helicase ssDNA translocation

rate. It is clear from Equation 4 that the larger the step

size d, the slower the helicase will be able to step forward.

Equation 1 then allows direct prediction of the unwinding

velocity as a function of force and sequence for a given

step size.

We compared the predicted unwinding rate versus

force relationship to the measurements at different step

sizes (Figure 6B). With a step size of 1 bp the model fits

the data at low forces, but at higher forces there is

a significant deviation between observed and predicted

unwinding rates. The model with step sizes greater than

1 bp does not predict the observed velocities at all forces,

and the predicted translocation rate is always slower than

the observed rate. This result is expected since at larger

step sizes the probability for multiple bases to fluctuate

open at the DNA fork is very low, and therefore the rate

of the helicase is much slower. In general, we concluded

that the force-velocity relationship we observed could

not be explained by this passive unwinding model. There

may exist more complicated passive models that are

consistent with our data. However, it is difficult to envi-

sion such models without violating the conventional

definition of the passive mechanism (Lohman and Bjorn-

son, 1996).

Unwinding Rate Observations Support an Active

Unwinding Model

In an alternative active mechanism, the helicase directly

destabilizes the dsDNA near the fork junction to facilitate

unwinding (Lohman and Bjornson, 1996; von Hippel and

Delagoutte, 2001; Betterton and Jülicher, 2003). We

formulated an active model that was again based on an

extension of the theory of Betterton and Jülicher (2003,

2005; Figure 7C). In this model, when the helicase is far

away from the junction, it advances along the ssDNA at

its ssDNA translocation rate, just as in the passive model.

However, when the helicase is within a characteristic

distance of M nucleotides away from the junction, it can

interact with the fork. If the interaction potential is repul-

sive, then the interaction destabilizes a region of the

dsDNA near the junction that is within this range M. In

this region the helicase can continue to advance forward,

albeit at a slower rate. This is as if the helicase encoun-

ters a ‘‘soft wall’’ of interaction at the fork. The helicase

may advance within this soft-wall until the distance be-

tween the helicase and the junction is less than its step

size, at which point the helicase encounters a ‘‘hard

wall.’’ This soft-wall interaction mediates the active open-

ing of the junction and therefore facilitates the advance-

ment of the helicase.

There are many different ways to formulate the interac-

tion between the helicase and the fork. Consider a simple



scenario where the interaction potential that destabilizes

the fork is assumed to decrease linearly with the distance

between the helicase and the junction at DGd per nucleo-

tide, within the range of interaction (M; Betterton and

Jülicher 2003, 2005). Therefore, the free energy to open

the junction is lowered within this range at a cost of a

decrease in the helicase forward translocation rate

k0 activeðmÞ:

DGactiveðl + m;FÞ=

8>><
>>:

DGpassiveðl + m;FÞ �mDGd;
0%m%M

DGpassiveðl + m;FÞ �MDGd;
m > M

; (5)

and

k00 activeðmÞ=

8>>>>>>>>>><
>>>>>>>>>>:

0;

m < d

k0 exp½� a minðM; dÞDGd=kBT �;
d%m < maxðM; dÞ

k0 exp½� aðM + d�mÞDGd=kBT �;
maxðM; dÞ%m < M + d

k0;

M + d%m

; (6)

where a (0 < a < 1) is a dimensionless coefficient deter-

mined by the relative location of the activation barrier for

helicase stepping motion within the step size. After taking

into account the destabilization due to the helicase inter-

action with the fork in DGactiveðl + m;FÞ, the same method

as shown in Equation 2 was used to calculate the proba-

bility Pactiveðl;m; FÞ for DNA to open m bases in front of

the helicase. Because of the additional energy term con-

taining DGd, the first M bases of dsDNA near the helicase

have a greater probability of opening. As a result, the av-

erage helicase unwinding rate in the active mechanism,

as calculated using Equation 1, is faster than that in the

passive mechanism for a given step size.

There are four parameters in the active model: the step

size d, the interaction range M, the interaction potential in-

crease per base DGd, and the activation barrier coefficient

a. The parameter a needs to be small to optimize the un-

winding rate, but a = 0 is a physically unrealistic condition

and singular limit (Betterton and Jülicher, 2005). To mini-

mize the number of fit parameters, we set a = 0.05 (in

fact, a > 0.3 would not fit our data). For each combination

of d and M, DGd was tuned to produce the best fit of the

model to the measured helicase unwinding force-velocity

relation. There were different combinations of (d, M) that

produced reasonable fits, but all required that M R d.

These results consist of a range of step sizes between

2–4 bp, interaction ranges R4 bp (depending on the

step size), and interaction potential increases of 1–2 kBT

per base (Figure S8). Figure 6B illustrates a good agree-

ment between measured unwinding velocity dependence

on force and simulated data with a step size of 2 bp, an in-

teraction range of 6 bp, and interaction potential increase

per base of 1.2 kBT. The same set of parameters also

correctly predicted the measured unwinding rate depen-
dence on DNA sequence (Figures 5A, S4, and S5). There-

fore, these unwinding rate versus force and unwinding

rate versus sequence results support an active unwinding

model where the T7 helicase destabilizes a region of

dsDNA near the junction and thus facilitates fork opening.

DISCUSSION

Degree of ‘‘Activeness’’ in DNA Unwinding

by Helicase

This work providesa quantitative approach todetermine if a

helicase unwinds DNA passively or actively, and if actively,

the degree of activeness (Figure 7D). The activeness may

be quantitatively characterized by DGd. The active model

predicts that unwinding rate increases with DGd and ap-

proaches the optimal unwinding rate (� ssDNA transloca-

tion rate) at �3.4 kBT (the free energy to open a single GC

base pair). For T7 helicase, the measured DGd was �1–2

kBT. Although our results support an active unwinding

mechanism for T7 helicase, the model also indicates the

helicase is not optimally active. It would be interesting to

investigate where other helicases lie on the DGd scale.

The degree of activeness may also be characterized by

the enhancement of unwinding rate from that of a passive

unwinding mechanism. In our studies, over the range of

forces examined, the measured unwinding rate was at least

seven times higher than those predicted by the strictly

passive unwinding model with the same step size.

Destabilization of the DNA Fork Junction

by Helicases

Our results suggest that T7 helicase interacts with the fork

junction and destabilizes a region of dsDNA near the junc-

tion to facilitate fork opening. This destabilization must ul-

timately be fueled by the free energy from the dTTP hydro-

lysis. The exact mechanism by which T7 helicase may

destabilize the fork is not known. Structural and biochem-

ical studies on T7 helicase have provided some intriguing

clues. T7 helicase encloses one of the ssDNA within its

central channel while excluding the other ssDNA at the

junction (Hacker and Johnson, 1997; Ahnert and Patel,

1997). The helicase’s predominantly negatively charged

exterior surface (Sawaya et al., 1999) should repel the

negatively charged complementary strand of DNA, either

in ssDNA or dsDNA forms. These interactions should oc-

cur when the helicase is within a few nm of the comple-

mentary DNA, given that the Debye-Huckel screening

length is�1 nm under physiological conditions (Israelach-

vili, 1992). This repulsion should weaken the base-pairing

affinity of the dsDNA near the junction. If this repulsion is

not sufficient to induce junction opening, the fork may be-

gin to enter the central channel of the helicase as the heli-

case advances on the ssDNA. In this case, the comple-

mentary ssDNA will necessarily have to be severely bent

near the channel entrance. The central channel of the heli-

case is only �2–3 nm in diameter (Sawaya et al., 1999;

Singleton et al., 2000), which can comfortably accommo-

date ssDNA, may barely accommodate dsDNA of �2 nm
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diameter, and will not accommodate dsDNA together with

the bent-back ssDNA. Considering ssDNA has a contour

length of�0.6 nm per nucleotide and a persistence length

of�0.8 nm (Smith et al., 1996; see also Figure S7), any sig-

nificant bending of ssDNA over a couple of nucleotides will

incur an energetic penalty, resulting in fork destabilization.

It is conceivable that electrostatic repulsion together with

ssDNA bending due to steric exclusion could expand the

interaction between the helicase and the fork over a few

bases near the junction. Therefore, by destabilization of

the fork, the helicase may be able to ‘‘wedge’’ through

the junction (Patel and Picha, 2000).

The physical mechanisms of fork junction destabiliza-

tion for nonring-shaped helicases are still under investiga-

tion. Crystal structure (Velankar et al., 1999) and footprint-

ing assays (Soultanas et al., 2000) of PcrA show that its 2B

subdomain binds to dsDNA near the junction and distorts

the double helix. Similarly the 2B subdomain of the struc-

turally homologous UvrD also binds to the duplex DNA

(Lee and Yang, 2006). For PcrA, mutations in the 2B do-

main abolished unwinding but retained the ssDNA translo-

cation, suggesting an active unwinding mechanism (Soul-

tanas et al., 2000). However, removal of the 2B subdomain

from the structurally homologous Rep resulted in more

efficient unwinding, suggesting that the 2B domain may

instead be involved in inhibition of the unwinding activity

(Cheng et al., 2002; Brendza et al., 2005). It has been sug-

gested that RecBCD unwinds dsDNA with an active

mechanism (Singleton and Wigley, 2002) based on its

characteristic high translocation rate. The high rate is facil-

itated by two motor subunits, RecB and RecD, with each

translocating on one of the two ssDNA toward the junction

(Taylor and Smith, 2003; Dillingham et al., 2003). A third

subunit, RecC, which is between the two motor subunits,

contains a ‘‘pin’’ region (Singleton et al., 2004) where

duplex DNA melting is believed to occur. Active destabili-

zation may take place by the motor subunits pulling the

junction against this pin region.

Strand Separation as a Major Barrier

to Helicase Translocation

Many helicases, if not all, are capable of rapidly translocat-

ing along ssNA but dramatically slow down during unwind-

ing (Kim et al., 2002; Jeong et al., 2004; Cheng et al., 2002;

Brendza et al., 2005; Myong et al., 2005; Dillingham et al.,

2000; Bertram et al., 2002; Fischer et al., 2004; Maluf et al.,

2003). For these helicases, it appears that DGd < DGGC (not

optimally active, Figure 7D) so that strand separation at the

junction represents a major obstacle to their forward trans-

location. Therefore, it is expected that the unwinding rate

should also be dictated by the dsNA sequence at the

fork, increasing at AT-rich regions and decreasing at GC-

rich regions. As a corollary, the application of an external

force to destabilize the fork should also facilitate unwind-

ing. Indeed, T7 helicase follows such a prediction. T7 heli-

case is capable of translocating along ssDNA �10 times

faster than it can unwind dsDNA, as has been shown by

this work and by previous studies (Kim et al., 2002; Jeong
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et al., 2004; Stano et al., 2005). Our observation of unwind-

ing rate dependence on dsDNA sequence and on force

clearly indicates that strand separation is a major barrier

for the T7 helicase. It is likely that all ring-shaped helicases

share similar characteristics in both ssDNA translocation

and dsDNA unwinding mechanisms.

Many non-ring-shaped helicases (Rep, PcrA, and UvrD)

rapidly translocate along ssNA, and slow down when un-

winding a dsNA fork (Cheng et al., 2002; Brendza et al.,

2005; Myong et al., 2005; Dillingham et al., 2000; Bertram

et al., 2002; Fischer et al., 2004; Maluf et al., 2003). This

indicates that strand separation is a major barrier for

nonring-shaped helicases as well. However, UvrD and

HCV NS3 have been shown to have unwinding rates

that are independent of the force destabilizing the fork

(Dessinges et al., 2004; Dumont et al., 2006), consistent

with unwinding not being limited by strand separation.

This apparent contradiction for these nonring-shaped hel-

icases, which is not observed in T7 helicase, may indicate

some fundamental differences between the ring-shaped

and nonring-shaped helicases in how the ssNA transloca-

tion is coupled to unwinding. When a nonring-shaped heli-

case encounters a junction, its translocation mechanism

may be altered, not just slowed down as with T7 helicase.

Indeed, monomers of UvrD and Rep are capable of trans-

locating along ssDNA. However, unwinding seems to re-

quire the formation of a helicase dimer near the junction

(Maluf et al., 2003; Fischer et al., 2004; Brendza et al.,

2005; Myong et al., 2005).

T7 Helicase Interaction with DNA Polymerase

Helicase can unwind nucleic acids without accessory pro-

teins but works more efficiently when coupled to them.

Interestingly, the unwinding rate of T7 helicase is greatly

enhanced and approaches that of ssDNA translocation

in the presence of T7 DNA polymerase (Stano et al.,

2005; Lee et al., 2006). This interdependence of helicase

unwinding rate and DNA polymerase replication rate has

been observed for homologous and heterologous heli-

cases and polymerases (Delagoutte and von Hippel,

2001). The results from this study provide a simple expla-

nation for these observations. This work suggests that the

T7 helicase in the absence of the polymerase destabilizes

the dsDNA near the fork junction by DGd �1–2 kBT (per

base), while DGd needs to be �3.4 kBT (GC base-pairing

energy) in order to achieve the maximum unwinding rate

(around the ssDNA translocation rate). In the current

study, additional destabilization of the fork was provided

by an application of a force to the junction. Similarly

when T7 helicase is coupled with DNA polymerase, the

polymerase may provide the additional destabilization

energy of �2 kBT, equivalent to a destabilization force of

�14 pN, that is necessary to achieve a maximum rate.

EXPERIMENTAL PROCEDURES

Biological Materials

A 5.2 kilobase (kb) DNA construct with both a biotin label and a digox-

igenin (dig) label was created as previously described (Koch et al.,



2002). Of this DNA, 4.1 kb was available for unwinding. The unwinding

segment was derived from three repeats of the 5S rRNA sequence,

each of which consists of five repeats of 207 bp (Figure S1). The three

5mers were joined together by 224 bp linking regions to form a con-

struct with 17 pseudorepeats of �200 bp. T7 helicase was prepared

as described previously (Patel et al., 1992). The expressed protein

was from gp4A0, which consists of the helicase and primase.

Single-Molecule Sample Preparation

The sample preparation for the optical trapping experiments was sim-

ilar to previously described (Koch et al., 2002) with the following mod-

ifications: Helicase was prepared by first incubating 2 mM helicase

monomer, 2mM dTTP, 3 mM EDTA, 0.02% Tween 20, and 50 mM

NaCl in 20 mM Tris-HCl (pH 7.5) buffer at 22�C for 20 min. Helicase

was then diluted to a final concentration of 2 nM monomer in 2 mM

dTTP, 7 mM MgCl2, 3 mM EDTA, 0.02% Tween 20, 50 mM NaCl,

and 20 mM Tris-HCl (pH 7.5). DNA tethers were formed by first adding

antidigoxigenin to the sample chamber, which binds nonspecifically to

the coverglass surface. Next the digoxigenin end-labeled DNA con-

struct was added to chamber, which was followed by the addition of

streptavidin-coated 0.48 mm polystyrene microspheres. Finally the

helicase solution was flowed into the sample chamber just prior to

data acquisition.

Single-Molecule Data Collection

Data were collected using a single beam optical trap as described

previously (Koch et al., 2002). Experiments were conducted under

constant force, position, or velocity as achieved via computer-con-

trolled feedback. Data were low-pass filtered to 5 kHz and digitized

at �12 kHz, then were further averaged to 110 Hz. Experiments were

conducted at a room temperature of 23.3�C. The temperature at the

helicase was expected to have increased slightly to 25 ± 1�C due to

local heating by the trapping laser (Peterman et al., 2003). The ac-

quired data signals were converted into force and number of base

pairs unzipped as previously described (Koch et al. 2002), with the

exception of using a more refined force-extension curve for ssDNA

(Figure S7).

Data Analysis

For the sequence-dependent studies (Figure 5A), each measured

force was aligned to a theoretical force for the initial 400 bp of mechan-

ically unwound DNA, improving positional accuracy and precision to

a few base pair (Shundrovsky et al., 2006). After alignment, an instan-

taneous unwinding rate at each sequence position was found by using

a Gaussian weighted filter of 0.05 s (Adelman et al., 2002) and then re-

sampling at 1 bp intervals along the sequence position. The final rate

versus position curve was found by averaging over all of the traces

at each position. For the unwinding rate versus force studies

(Figure 6B), the rate was obtained by a line fit to each measured num-

ber of base pairs unwound versus time trace. Only data between the

sequence positions of �600 and �807 bp (one pseudorepeat) were

used for the fit. The final rate was obtained by averaging over all of

the traces at each force.

Determination of Base-Pairing Energies

For simplicity DGbp is assumed to only depend on if a base pair is AT

(DGAT) or GC (DGGC). These energies were determined from unzipping

DNA in the absence of helicase and then fitting the unzipping force re-

sults to a theoretical model (Bockelmann et al., 1997). This model was

computed from a partition function using the free energies as a function

of the number of base pairs unzipped and the end-to-end extension

of the unzipped DNA: DGðn; xÞ=
Pn

i = 1 DGbpðiÞ+ 2n
R x=2n

0 FðxntÞdxnt,

where FðxntÞ is the force versus extension relation for one nucleotide

of ssDNA (Figure S7). DGAT and DGGC were tuned to minimize the

difference between the predicted and measured unzipping forces

(Figure 5B), yielding best-fit values of 1.2 kBT and 3.4 kBT, respectively.
For comparison, these values are comparable to, but �10% smaller

than, those estimated with DINAMelt (Markham and Zuker, 2005).

Simulation of Sequence-Dependent Unwinding Rate

To predict the sequence-dependent unwinding rate, Monte-Carlo sim-

ulations of helicase position versus time traces were generated using

the active model with d = 2 nt, M = 6 bp, and DGd = 1.2 kBT. An amount

of noise comparable to that of experiments was added to the simu-

lated traces, and the instantaneous unwinding rate at each base was

obtained using the same data analysis method as was used for the

measured single-molecule traces. The resulting predicted helicase-

unwinding rate versus sequence-position (Figure 5A, green curve) is

an average of 500 simulated traces.

Supplemental Data

Supplemental Data include eight figures, Discussion, and References

and can be found with this article online at http://www.cell.com/cgi/

content/full/129/7/1299/DC1/.
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